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Abstract

In this study., hyperspectral images were used to detect a fungal disease in apple leaves called

Marssonina blotch (AMB). Estimation models were built to classify healthy, asymptomatic and symptomatic

classes using partial least squares regression (PLSR), principal component analysis (PCA), and linear dis-

criminant analysis (LDA) multivariate methods. In general, the LDA estimation model performed the best a-

mong the three models in detecting AMB asymptomatic pixels, while all the models were able to detect the

symptomatic class. LDA correctly classified asymptomatic pixels and LDA model predicted them with an accu-

racy of 88.0%. An accuracy of 91. 4% was achieved as the total classification accuracy. The results from this

work indicate the potential of using the LDA estimation model to identify asymptomatic pixels on leaves infec-

ted by AMB.
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Introduction

Apple Marssonina blotch (AMB) . caused by the fungus
Diplocar pon mali, is one of the most severe apple diseases
known and it is widely distributed in South Korea''?!., Symp-
toms initially appear as brownish spots which later become
darker and surrounded by chlorotic regions. The disease leads
to defoliation during the growing season, thereby weakening
AMB

mainly infects leaves, but in severe situations, it can also at-

tree vigor and diminishing fruit yield and quality"*.

tack twigs and fruits. The disease poses a serious problem to
major apple producing regions due to the fact that it occurs in
consecutive years and it is difficult to detect and control™?,
The early symptomatic stage of the disease is particularly
challenging to detect by the human eye and symptoms might
differ significantly by apple variety. Worst still, even if it is
detected and sprayed with fungicides at the early symptomatic

stage, it might be too late to save the tree owing to the fast
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developing speed of AMB. Due to these challenges, most Ko-
rean apple growers spray AMB fungicides in advance of favor-
able conditions for disease infection before the summer
months". This could lead to a waste in the use of fungicides,
enhance fungicide resistance and also lead to environmental
pollution. As a result, the development of AMB detection
methods and determination of optimal timing for fungicide
spray are needed to reduce fungicide usage.

Nondestructive measurement techniques have been devel-
oped to overcome the disadvantages of the conventional inva-
sive methods. in recent years, hyperspectral imaging technol-
ogy has been developed as an effective inspection tool for qual-
ity and safety assessment of a variety of agricultural prod-

[7-10]

ucts . It is generally non-destructive, reliable, and carries

abundant data. There are several studies concerning the appli-

cation of this technique for sensing fungal diseases including

detection of black spots on citrust'''*

[13]

, fungal inspection in
stored canola

kernelst'* 1%

, fungal infection and development in corn

, damages by Fusarium in wheat and oats ker-
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H817, and black pox symptom on apple surface. These

nels
studies have shown the feasibility of hyperspectral imaging for
identifying symptoms in crops through image or spectroscopic
processing. However, the potential of hyperspectral imaging
technique has not yet been studied in the detection of AMB in
apple tree leaves. Thus, the main objective of this study was
to develop detection methods for AMB diseased leaves using
hyperspectral images. The specific objective of the study was
to investigate various classification and estimation methods for
separating healthy, asymptomatic and symptomatic regions on

apple leaves using spectral reflectance data.

1  Experimental procedure

1.1 Experimental setup and data acquisition

The experimental apple orchard from which hyperspec-
tral images were acquired was located in the Apple Research
Institute at Gunwi, Gyeongsangbuk-do province, South Kore-
a. The apple cultivar used in this study was Fuji/M. 9; the
trees were inoculated with AMB spores three months before
data acquisition. A cluster comprising of twelve leaves on a
single tree branch was selected to be imaged for this study and
was imaged once every five to nine days between October 14
and October 28, 2014. This was done so as to track the pro-
gression of the disease on the leaves.

A hyperspectral camera (PS-V10E, Specim, Finland)
was used in acquiring hyperspectral images for the range of
400~1 000 nm and it is shown in Fig. 1. The hyperspectral
camera was mounted on a tripod of 70 cm in height. A black
cloth was placed on the ground to prevent confusing weeds for
apple leaves. A reflectance panel, with 99% reflectance , was
placed on the black cloth for radiometrically correcting the im-
ages to reflectance. Images were exported to the Environment
for Visualizing Images (ENVI version 5.2, EXELIS, Colo-
rado, USA) software for further processing and extraction of
reflectance spectra.

Pixels on the apple leaves were classified into four clas-
ses: healthy green leaf (HG), healthy green vein (HGV),
AMB asymptomatic ( ASYM),

(SYM). The number of pixels extracted for each class is giv-

and AMB symptomatic

en in Table 1. The reason why HGV was included as one of
the classes was because its color was similar to the color of
the early symptomatic pixels. HG pixels were collected from
regions far away from the symptomatic area, and HGV pixels
were collected in the vein regions of the leaves. ASYM pixels
were chosen from the earlier image than an image which had a
developing symptomatic or new symptomatic pixels. Accord-
ing to the hyperspectral images acquired over time, features of
developing AMB symptoms appeared as shown in Fig. 2.

Based on the overlapped symptomatic image of 3 stage images

by time, ASYM pixels were chosen from the not-overlapped
area as shown in Fig. 3. In addition, pixels at the same loca-
tion of the same leaf where new symptoms occurred one week

later were also selected as ASYM pixels.

i
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Fig. 1 Hyperspectral imaging system setup for apple

tree leaves imaging in experimental site

Table 1 Names and the number of pixels for each class
Class Number of pixels
Healthy green leaf (HG) 1317
Healthy green vein (HGV) 1125
Asymptomatic (ASYM) 1424
Symptomatic (SYM) 1873

1.2 Data analysis
White and dark references were captured in hyperspectral
images in order to correct the acquired images to reflectance.
Flat-field correction was performed on the original hyper-

spectral images using Eq. (1) defined below:

Re (%) = Reaw = Roare o1 D

Rwnire — Rpark
where R is the corrected reflectance, Rgaw is the original

sample image, Rwmre and Rparg were the reference image ob-
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tained from white and dark references, respectively"'®. The
dark reference was acquired digitally by SpectralDAQ (version
3. 62, SPECIM, Spectral Imaging Ltd. , Oulu, Finland). A
reflectance factor of 100% for the white reference was used in

this study for simplification, although the reflectance panel

Image taken on 14 th oct

Image taken on 23 th oct

had a reflectance value of 99% across the wavelength range
covered by the hyperspectral imaging system. The procedures
used in this study for the hyperspectral images analysis are

shown in Fig. 4.

Image taken on 28 th oct

Fig. 2 An example to explain to select asymptomatic pixels using hyperspectral images of developing

AMB symptoms over time and enlargements (polygon area means symptomatic area)
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Fig. 3 How to make the overlapped images using developing symptomatic areas

Flat field
correction

Hyperspectral
images acquisition

Spectral
smoothing

y :pet‘?"ab FLSR, PCA
extraction by and LDA
classes

Fig. 4 Steps taken in hyperspectral image analysis

Matlab (R2015a, MathWorks, Natick, MA) was used
to conduct partial least squares regression (PLSR) . principal
component analysis (PCA), and linear discriminant analysis
(LDA) to the extracted reflectance spectra in range of 400 to
1 000 nm. The estimation model was developed with four lin-
ear discriminants from LDA classifiers. Results were repre-
sented in terms of score plots and coefficient of determination

(R?) of cross-validation of the estimation model performance.

2  Results and Discussion

The average reflectance spectra of each class are shown in

Fig. 5. The other three classes, except for the symptomatic

class, had a similar signature, especially around 555 nm and
over 750 nm. Unlike the other classes, AMB symptomatic
(SYM) spectra did not possess a peak between 495 and 570
nm due to the absence of chlorophyll in symptomatic regions.
Based on the aforementioned characteristic, the SYM class
can easily be separated from the other classes. PLSR, PCA,
and LDA were conducted for effective separation and predic-
tion and these estimation models were performed with the test
set.

First, PLSR and PCA were conducted to minimize spec-
troscopic interference and noise. For the most part, the re-
sults derived from PCA and PLSR were similar. PLSR and
PCA explained 95. 9% and 96. 8% of the training set variation
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with four principal components, respectively. Figure 6 shows
the first three latent variable (LV) from reflectance spectra,
and it indicates that the PLSR model could efficiently classify
pixels of SYM against pixels of HG, HGV and ASYM.
However, pixels of ASYM should be recognized against other
classes in order to develop a model to identify the early symp-
toms on apple leaves. The SYM class was separated easily
from the other classes due to its distinct color and reflectance
spectra. However, ASYM class could not be easily separated
from the HG class using PLSR due to similarity in their color

and spectra.
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Fig. 5 Average spectra by classification
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Fig. 6 Score plot between leaf pixels in terms of the principal components from PLSR
(a): LV 1ws. LV2ws. LV3; (b): LV 1ws. LV 2

PCA was performed to ideotify four classes. The PCI1,
PC2, and PC3 scores plots, shown in Fig. 7, contained the
greatest amount of variability in the data set, and as a result,
PCA
showed similar performance results as those of PLSR. Score

plots indicated that PCA could classify pixels of SYM against

they were used in discriminating among the classes.

o HG
a
( ) o HGV
ASYM
¢ SYM

PC1

pixels of other classes. Just as was the case in the PLSR anal-
ysis, the ASYM class could hardly be separated from the oth-
er classes. Score plots of PCA performed less efficiently than
the score plots of PLSR in separating the classes, since SYM
was distributed in wide area and overlapped more with HG

and ASYM in spacious plain.

HG
(b) o HGV
£ ASYM

N
o]

IS

Fig. 7 Score plots between leaf pixels in terms

of the principal components from PCA
(a): PC1 ws. PC2ws. PC3; (b): PC1 vs. PC2

Cross-validation results used in identifying the four clas-
ses from both PLSR and PCA analyses are shown in Fig. 8.

The PLSR estimation model performed better because R* of

estimation models using PLSR and PCA were 0. 57 and 0. 36,
respectively. Based on the estimation model performances,

PLSR and PCA models could be suitable to separate SYM
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pixels against pixels of HG, HGV and ASYM. However,
both models showed high separation error for ASYM class.
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Further analysis should be considered so as to ensure the

ASYM class can easily be separated from the other classes.
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Fig. 8 Cross-validation results to identify 4 classes using PLSR (a) and PCA (b)

LDA is closely related to both PCA and factor analysis in
that they all look for linear combinations of variables that ex-
plain the data well. LDA explicitly attempts to model the
differences between classes while PCA does not take into ac-
count any difference between classes, it provides only a visu-
alization of the variability of the data, does not imply any

clustering, although formation of sample groups could be a

possible result''™, Score plots with the liner discriminants
200+
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from LDA are shown in Fig. 9. Based on the score plot forma-
tion, LDA performed better in separating the classes than
PLSR and PCA. In particular, ASYM pixels were separated
against the other three classes. Additionally, the reflectance
taken from ASYM seems to be separated from HG effective-
ly. Thereby, cross-validation was applied to verify the esti-

mation model using LDA scores.
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Fig. 9 Score plots between leaf pixels in terms of the liner discriminants (LD) from LDA
(a): LD 1 ws. LD 2 ws. LD 3; (b): LD 1 ws. LD 2

The LDA score plots and cross-validation results are
shown in Fig. 10, and Table 2 shows the classification accura-
cy and error obtained for each class using thresholds of 1.7,
2.1, and 3. 6. The R? of estimation model using LDA scores
was 0. 81. It performed better compared to R* achieved using
PLSR and PCA estimation models. In particular, the classifi-
cation accuracy obtained for ASYM class was 88%, and
11. 8% of SYM samples were misclassified as healthy pixels
(HG and HGV). Comparing the classification accuracy a-
chieved for the ASYM class with results obtained by other re-
searchers who have studied similar fungal diseases, the re-

sults from this analysis were not as high as some others. Bul-

anon et al. 'Y obtained an accuracy of 96% for citrus black
spot detection , Senthilkumar et al.''*! achieved over 92%
classification accuracy for infected canola seeds, and Tallada
et al. M) reported 98% detection accuracy of uninfected corn
kernels. However, the AMB asymptomatic area on leaves is
very difficult to characterize since they have the same color as
healthy leaves. Considering that asymptomatic diseased leaves
are hardly ever spotted by the human eyes, the developed es-
timation model using LDA has the potential for being used for
identification of asymptomatic regions of leaves infected by

AMB.
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5 2HGV 3 Conclusion
v

g 4 8 In this study, multivariate data analysis of hyperspectral

E 8 images was applied to identify four different classes of apple

‘q"é 3 leaves which were healthy green leaf (HG), healthy green

& 5 vein ( HGV), AMB asymptomatic ( ASYM), and AMB

symptomatic (SYM). Reflectance spectra information was

1 extracted from time lapse hyperspectral images acquired from

" a cluster of leaves on a tree and class estimation models were

1 2 3 4 built using PCA PLSR, and LDA. The estimation model built

Actual class
Fig. 10  Cross-validation result of linier estimation

model using LD scores

Table 2 Number of pixels and classification rates in perform-

ance of estimation model using LDA scores

W Actual class
HG HGV ASYM SYM Sum

HG 813 348 26 0 1187
. HGV 427 597 142 0 1166
Estimated — \oyn\r 77 180 1253 162 1672
class
1

SYM 0 0 3 1711 714

Sum 1317 1125 1424 1873 5739

Classification accuracy/% 61.7 53.1 88.0 88.0 91. 4
Classification error/ % 38.3 46.9 12.0 12.0 8.6
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